a) General				
School	ENGINEERING			
Academic unit	MECHANICAL ENGINEERING			
Level of studies	Undergraduate			
Course code	MM01Y06	Semester	1	
Course title	Chemistry			
Independent teaching activities		Weekly teaching hours	ECTS	
Lectures		2	4.0	
Laboratory exercises		2		
Course type		General background		
Course category		Compulsory		
Prerequisite courses		-		
Language of instruction and examinations		Greek		
Is the course offered to Erasmus students		No		
Course website (url)		http://moodle.puas.gr		

b) Learning outcomes and general competences

b1. Learning outcomes

Upon successful completion of this course, the student will be able to:

- distinguish the basic chemical reactions of mechanical interest and performs the relevant calculations.
- perform basic physicochemical measurements.
- identify the basic physical and chemical processes as well as the production technologies related to its specialty.
- apply the appropriate materials and production methods

b2. General competences

- Search for, analysis and synthesis of data and information with the use of the necessary technology
- Working independently
- Team work
- Respect for the natural environment
- Production of free, creative and inductive thinking

c) Syllabus

Solutions, Chemical reactions, Combustion reactions, incomplete, complete, with excess air, Exhaust gases, Chemical reaction velocity, Chemical equilibrium, pH, Water chemistry, Physicochemical measurements, Mass and energy balances, Process flow diagrams, Reverse osmosis desalination, Electrolysis, Plating, Corrosion and protection of materials, Production technologies related to the specialty of Mechanical Engineering and laboratory exercises.

d) Teaching and learning methods - Evaluation

Delivery	Face-to-face		
Use of information and communications technology	- Moodle/eclass		
Taashina mathada	Activity	Semester workload	
Teaching methods	Lectures	20	

	Tutorials	6	
	Laboratory exercises	26	
	Computational exercises		
	Individual work	78	
	Course total	130	
Student performance	Written final exam (100%), which includes short answer questions (40%) and problem solving (60%)		
evaluation	For the laboratory part of the course, individual work per exercise and a written final exam.		

e) Suggested bibliography

- 1. Φουντουκίδης Ε. (2015). Εργαστηριακές Ασκήσεις Χημικής και Περιβαλλοντικής Τεχνολογίας. Εκδόσεις Πουκαμισά.
- 2. Σδούκου Α., Πομωνή Φ. (2010). Ανόργανη Χημική Τεχνολογία. Εκδόσεις Τζιόλα.
- 3. Παπαστεφάνου Σ., Λάλια Μ., (2012). Γενική και Ανόργανη Χημεία. Εκδόσεις Ζήτη.
- 4. Ζουμπούλης Δ., Ζουμπούλης Α., Μάτης Κ., Μαύρος Π. (2009). Εισαγωγή στη Χημική Τεχνολογία. Εκδόσεις Τζιόλα.
- 5. Καραγιαννίδης Π. (2008). Ανόργανη Χημεία. Εκδόσεις Ζήτη.