a) General				
School	ENGINEERING			
Academic unit	MECHANICAL ENG	IECHANICAL ENGINEERING		
Level of studies	Undergraduate			
Course code	MM004Y03	Semester	4	
Course title Fluid mechanics I				
Independent teaching activities		Weekly teaching hours	ECTS	
Lectures		4	6.5	
Laboratory exercises		1	0.5	
Course type		Special background		
Course category		Compulsory		
	Prerequisite courses	-		
Language of instruction and examinations		Greek		
Is the course of	fered to Erasmus students	Yes		
Course website (url)		https://eclass.uniwa.gr/courses/MECH107/		
		https://eclass.uniwa.gr/courses/MECH119/ (Erasmus students)		
b) Learning outcomes and general competences				
b) Learning outcomes				
Upon successful completion of this course, the student will be able to:				
- Describes the fu	undamental principles go	overning the statics and dynamic	s of fluids,	
- Solves hydrosta	tic and aerostatic proble	ems,		
- Identifies the fu	indamental equations for	r conservation of mass, momentu	Im and energy in	
integral form and explain the physical significance of their individual terms,				
- Implements the fundamental equations of mass, momentum and energy conservation for the analysis of problems of one-dimensional - incompressible flows in closed conduits				
- Applies analytic	cal methods for calculati	ing flow quantities in practical a	oplications,	
- Uses the methodologies of dimensional analysis and the similarity rules for the design of				
experiments and the evaluation of measurements,				
- Implements the required procedures for conducting laboratory activities and submit a technical report on them				
b2 General competences				
- Search for analysis and synthesis of data and information with the use of the necessary				
technology				
- Working independently				
- Team work				
c) Syllabus				
Introductory concepts, Fluid statics, Kinematics of fluid flow, Integral analysis of flow fields,				
I urbulent flows, Dimensional analysis and similitude, One dimensional incompressible flows in closed conduits. Laboratory and computational exercises.				
d) Teaching and learning methods - Evaluation				
Delivery Face-to-face, D		vistance learning		
Use of information and - Commercial/free/open source software				
communications - Multimedia a		pplications		
technology - MS Teams a		nd eclass		

	- Open courses		
	Activity	Semester workload	
	Lectures	39	
	Tutorials	10	
Teaching methods	Laboratory exercises	13	
	Computational exercises	3	
	Individual work	104	
	Course total	169	
	Intermediate assessment (individual and / or group work and / or written examination) and written final examination.		
Student performance evaluation	For the laboratory exercises: Individual and / or group assignments and written or oral examination or presentation, per exercise and per case of study.		
e) Suggested bibliography			
 Παπαϊωάννου, Α. (2002 Παπανίκας, Δ.Γ. (2010) 	2). Μηχανική των Ρευστών. Εκδ. Γ. . Εφαρμοσμένη Ρευστομηχανική. Μ	Γκέλμπεσης. edia Guru.	

- 3. Cengel, Y. and Cimbala, J. (2013). *Fluid Mechanics: Fundamentals and Applications*. McGraw Hill.
- 4. Elger F.D., Williams C.B., Crowe T.C. and Roberson A.J. (2018). Μηχανική Ρευστών για Μηχανικούς. Α. Τζιόλα & Υιοί Α.Ε.
- 5. Munson B.R., Rothmayer A.P., Okiishi T.H. and Huebsch W.W. (2016). Μηχανική Ρευστών. Α. Τζιόλα & Υιοί Α.Ε.