a) General					
School	ENGINEERING				
Academic unit	MECHANICAL ENGINEERING				
Level of studies	Undergraduate				
Course code	MM006Y06	Semester	6		
Course title	English Language	&Technical Terminology			
Independent teaching	activities	Weekly teaching hours	ECTS		
Lectures		3	4		
Laboratory exercise	es	-	4		
	Course type	Special background			
	Course category	Compulsory			
	Prerequisite courses	-			
Language of inst	ruction and examinations	English			
Is the course of	fered to Erasmus students	Yes			
	Course website (url)				

b) Learning outcomes and general competences

b1. Learning outcomes

Upon successful completion of this course, the student will be able to:

- Acquire and use technical vocabulary, terminology and structure connected to the field of Mechanical Engineering
- Extract specific information from texts about components, devices, structures, and processes
- Identify devices, components, structures, processes and explain their function
- Understand the structure and function of devices and components
- Recognize differences between types of devices and components
- Understand the relation between structures, components and processes
- Understand the features and technical specifications of different components and devices
- Describe devices, components, structures, and processes
- Discriminate between different types of processes

b2. General competences

- Search for, analysis and synthesis of data and information with the use of the necessary technology
- Adapting to new situations
- Working independently
- Team work
- Working in an international environment
- Respect for difference and multiculturalism
- Respect for the natural environment
- Showing social, professional and ethical responsibility and sensitivity to gender issues
- Criticism and self-criticism
- Production of free, creative and inductive thinking
- Others

c) Syllabus

Energy, Heat and Work, Material Properties, Stress analysis, Boiler operation, Stationary/Moving Parts of an Engine, Principles of an Internal Combustion Engine, Tribology, Lubricating Systems,

Fluid Heat Transfer, Thermodynamics, Computer-aided Manufacturing – Computer Numerical Control, Mechatronics, Control Systems, Dc Generators, Clean Coal Technology, Alternative Sources of Energy, Flat Plate Collectors-Collecting the heat, Solar Radiation-Solar Radiation Measurement, Engineering and the Earth's Resource, Air conditioning systems, Refrigeration systems

41	Teaching	1	1 :		Dane	14:
a)	Teaching	and	iearning	methods -	· Eva	iuaiion

Delivery	Face-to-face, Distance learning, etc.			
Use of information and communications technology	- Multimedia applications - eclass			
	Activity	Semester workload		
	Lectures	39		
	Tutorials			
Teaching methods	Laboratory exercises	0		
	Computational exercises	0		
	Individual work	65		
	Course total	104		
Student performance evaluation	Intermittent assessment and final written examination			

e) Suggested bibliography

- 1 Authentic Reading Texts
- 2 E.A. Avallone and T. Baumeister, 1987, Mark's standard handbook for Mechanical Engineers, 9th edition
- 3 M.W. Zemansky, 1981, Heat and Thermodynamics, 6th edition
- 4 Robert L. Norton, 1998, Machine design, Ed. Prentice Hall
- 5 CM and Johnson, 1989, General Engineering, Ed. Cassell.....