a) General				
School	ENGINEERING			
Academic unit	MECHANICAL ENGINEERING			
Level of studies	Undergraduate			
Course code	MM107Y02	Semester	7	
Course title	Fluid mechanics I			
Independent teaching activities		Weekly teaching hours	ECTS	
Lectures		4	5.5	
Laboratory exercises		1		
Course type		Knowledge deepening/consolidation		
Course category		Compulsory for Direction 1		
Prerequisite courses		-		
Language of instruction and examinations		Greek		
Is the course offered to Erasmus students		Yes		
Course website (url)		https://eclass.uniwa.gr/courses/MECH109/ https://eclass.uniwa.gr/courses/MECH120/ (Erasmus students)		

b) Learning outcomes and general competences

b1. Learning outcomes

Upon successful completion of this course, the student will be able to:

- Identifies the fundamental equations of conservation of mass, momentum and energy in differential form and explains the physical significance of their individual terms,
- Calculates the aerodynamic forces exerted on bodies,
- Calculates the coefficient of friction and the integral sizes of the boundary layer on surfaces that interact with the flow field,
- Implements the mass, momentum and energy conservation equations to analyze onedimensional compressible flow problems,
- Solves unsteady flow problems,
- Implements the required procedures for conducting laboratory activities and submit a technical report on them,
- Collaborate with his classmates to analyze and present a study that may include a computational and / or experimental part using computational and experimental fluid dynamics tools, combining information and communication technologies.

b2. General competences

- Search for, analysis and synthesis of data and information with the use of the necessary technology
- Working independently
- Team work
- Working in an international environment

c) Syllabus

Differential analysis of fluid flow, Incompressible-inviscid flows, Boundary layers, One-dimensional compressible flows, Unsteady flows, Experimental and computational fluid dynamics. Laboratory and computational exercises.

d) Teaching and learning methods - Evaluation

Delivery	Face-to-face, Distance learning.		
Use of information and communications technology	 Commercial/free/open source software Multimedia applications MS Teams/Moodle/eclass Open courses 		
	Activity	Semester workload	
	Lectures	39	
	Tutorials	10	
Teaching methods	Laboratory exercises	10	
	Computational exercises	5	
	Individual work	92	
	Course total	156	
Student performance	Intermediate assessment (individual and / or group work and / or written examination) and written final examination		
Student performance evaluation	For the laboratory exercises: Individual and / or group assignments and written or oral examination or presentation, per exercise and per case of study.		

e) Suggested bibliography

- 1. Παπαϊωάννου, Α. (2002). Μηχανική των Ρευστών. Εκδ. Γ. Γκέλμπεσης.
- 2. Cengel, Y. and Cimbala, J. (2013). *Fluid Mechanics: Fundamentals and Applications*. McGraw Hill.
- 3. Elger F.D., Williams C.B., Crowe T.C. and Roberson A.J. (2018). Μηχανική Ρευστών για Μηχανικούς. Α. Τζιόλα & Υιοί Α.Ε.
- 4. Munson B.R., Rothmayer A.P., Okiishi T.H. and Huebsch W.W. (2016). Μηχανική Ρευστών. Α. Τζιόλα & Υιοί Α.Ε.
- 5. White, F. (2010). Fluid Mechanics. McGraw-Hill.