a) General				
School	ENGINEERING			
Academic unit	MECHANICAL ENGINEERING			
Level of studies	Undergraduate			
Course code	MM108Y01	Semester	8	
Course title	Smart energy buildings			
Independent teaching activities		Weekly teaching hours	ECTS	
Lectures		3	6.0	
Laboratory exercises		2		
Course type		Knowledge deepening/consolidation		
Course category		Compulsory for Direction 1		
Prerequisite courses		-		
Language of instruction and examinations		Greek / English		
Is the course offered to Erasmus students		Yes		
Course website (url)		https://moodle.uniwa.gr/course.	/view.php?id=1239	

b) Learning outcomes and general competences

b1. Learning outcomes

Upon successful completion of this course, the student will be able to:

- Identify the main characteristics of smart energy buildings
- Identify the basic mechanisms of building energy consumption
- Identify building elements that require energy upgrade
- Apply techniques and technologies that determine a building to be smart-energy
- Evaluate different options for the energy upgrade of buildings
- Apply the legislation in force concerning building energy consumption

b2. General competences

- Data collection, synthesis, analysis and evaluation
- Decision making
- Teamwork
- Environmental responsibility
- Production of free, creative and inductive thinking

c) Syllabus

Theory: Legislation and regulation on building energy performance; energy audit instruments and devices; electrical/thermal energy consumption audit; audit of building's electromechanical installations' performance; bioclimatic design; operation principles of passive solar systems; interventions for improving building energy performance; natural ventilation principles; buildings' thermal comfort conditions estimation indices; methodology for the assessment of comfort conditions in the interior of buildings; building energy audit with the use of appropriate devices and software; energy audit technical reporting; energy design of new buildings.

Lab: Building energy audit equipment; energy audits' legislative framework; measuring energy parameters of building operation; energy audit of building envelope; energy audit of the central heating system; air conditioning energy audit; recording of energy parameters; application of energy-saving measures; energy performance software applications.

d) Teaching and learning methods	- Evaluation

Delivery	Face - to - face (classroom lectures, lab)

Use of information and communications technology	Commercial/free/open-source softwareMultimedia applicationsMS Teams/Moodle/e-class		
	Activity	Semester workload	
	Lectures	26	
	Tutorials	13	
Teaching methods	Laboratory exercises	26	
	Computational exercises	13	
	Individual work	78	
	Course total	156	
Student performance evaluation	For the theoretical part of the module, individual and/or group assignments and presentation of the assignments. A written final exam that includes short-answer questions and solving of numerical problems. For the lab part of the module, individual and/or group assignments and written or oral exam or presentation, for each assignment and case study.		

e) Suggested bibliography

- 1. Lewis, J.O., Goulding, J., Steemers, T., (1992). *Energy in architecture: European Passive Solar Handbook*, ed. Batsford Ltd, London.
- 2. Kavadias, K. A. (2010). Integration of stand-alone and hybrid wind energy systems into buildings. In J. K. Kaldellis (Ed.), *Stand-alone and hybrid wind energy systems*. *Technology, energy storage and applications* (pp. 475–505). Woodhead Publishing.
- 3. Monge-Barrio, A., Gutiérrez, A. S.-O. (2018). Passive Energy Strategies for Mediterranean Residential Buildings: Facing the Challenges of Climate Change and Vulnerable Populations. Springer International Publishing.
- 4. Philips, D., (2004). *Daylighting: Natural Light in Architecture*, ed. Architectural Press, Oxford.
- 5. Hestnes A., Hastings S. R., Saxhof B. (1996). *Solar Energy Houses*. James & James London, ISBN 1873936699.