a) General					
School	ENGINEERING				
Academic unit	MECHANICAL ENGINEERING				
Level of studies	Undergraduate				
Course code	MM109Y01		Semester	9	
Course title	Thermal Power Stations				
Independent teaching activities			Weekly teaching hours	ECTS	
Lectures			3	7	
Laboratory exercises			2	/	
Course type		Knowledge deepening			
Course category		Compulsory for Direction 1			
Prerequisite courses		-	-		
Language of instruction and examinations		Greek			
Is the course offered to Erasmus students		No			
Course website (url)			https://eclass.uniwa.gr/courses/MECH126 https://moodle.puas.gr/course/index.php?categoryid=32		

b) Learning outcomes and general competences

b1. Learning outcomes

Upon successful completion of this course, the student will be able to:

- Understand global energy needs
- Know the various energy production technologies
- Apply thermodynamic laws and equilibrium masses, momentum and energy to solve problems related to steam power plants
- Analyze and calculate the combustion parameters and the thermal efficiency of power plants
- Recognize the operating characteristics of combined cycle

b2. General competences

- Search for, analysis and synthesis of data and information with the use of the necessary technology
- Decision-making
- Working independently
- Team work
- Respect for the natural environment

c) Syllabus

Global Energy Needs, General Description of Thermal Stations, Development of Steam Generators - Internal Formulation (Heater, Superheater, Regenarator, Economiser), Thermal calculations for Boilers, Possibility to increase efficiency, Power pumps-Condensers-Deaerator, Combustion theory (General - Stoichiometric combustion - Excess air combustion - Fuel types - High & Low calorific value - Theoretical / Actual temperature of the combustion, Combustion diagram), Flow in steam generators, Rankin cycle (Simple, with superheating, with regeneration), Combined Rankine & Brayton cycle

Laboratory Exercises

d) Teaching and learning me	ethods - Evaluation
Delivery	Face-to-face

Use of information and communications technology	 Commercial/free/open source software Multimedia applications Moodle/eclass Open courses 			
	Activity	Semester workload		
	Lectures	26		
	Tutorials	13		
Teaching methods	Laboratory exercises	26		
	Computational exercises	0		
	Individual work	91		
	Course total	156		
Student performance evaluation	Theory: Written final examination Laboratory: Multiple choice questionnaires, short-answer questions,			
o , alaation	open-ended questions or written work			

e) Suggested bibliography

- 1. Νίκας, Π., Κ. (2011). Εφαρμοσμένη Θερμοδυναμική για Μηχανικούς. Leeder Enterprises.
- 2. Παπαγεωργίου, Ν., Γ. (1993). Ατμοπαραγωγοί Ι & ΙΙ. Εκδόσεις ΣΥΜΕΩΝ.
- 3. Κακαράς, Ε. (2000). Θερμοηλεκτρικοί Σταθμοί. Εκδόσεις Φούντα.
- 4. Πολυζάκης, Α. (2017). Σταθμοί Παραγωγής Ηλεκτρικής Ισχύος. PowerHeatCool.
- 5. Woodruff, E., Lammers, H. & Lammers, T. (1998). Steam Plant Operation. McGraw-Hill.
- 6. Anarratone, D. (2008). Steam Generators: description and design. Springer Verlag.