a) General				
School	ENGINEERING			
Academic unit	MECHANICAL ENGINEERING			
Level of studies	Undergraduate			
Course code	MM207Y02	Semester	7	
Course title	Manufacturing processes			
Independent teaching activities		Weekly teaching hours	ECTS	
Lectures		3	5.5	
Laboratory exercises		2		
Course type		Knowledge deepening/consolidation		
Course category		Compulsory for Direction 2		
Prerequisite courses		-		
Language of instruction and examinations		Greek		
Is the course offered to Erasmus students		Yes		
Course website (url)		http://triblab.puas.gr		

b) Learning outcomes and general competences

b1. Learning outcomes

Upon successful completion of this course, the student will be able to:

- Describe the main processes for shaping mechanical components and their joining to integrated assemblies.
- Distinguish among the physical mechanisms that take place during shaping via (a) forming, (b) casting and (c) powder metallurgy techniques.
- Recognize the crucial manufacturing parameters for shaping via (a) plastic deformation (rolling, extrusion, drawing), (b) melting and solidification (casting, welding) and (c) pressing, firing and sintering.
- Design/calculate components to be shaped in accordance to specific technical requirements and evaluate the quality of the final product.
- Suggest the most appropriate shaping technique per material.
- Evaluate/classify multiple proper solutions based on techno-economic criteria.

b2. General competences

Upon completion of the course, the students would develop, also, general competences, concerning:

- Search, extraction, analysis and synthesis of scientific data and knowledge, using screening of large scientific databases.
- Decision making capabilities on the particular item of manufacturing technique selection.
- Understanding the requirements for generic approaches in a worldwide environment.
- Project planning and management
- Capability of performing individual- and team-working case studies.
- Ability to approach the multi-disciplinary character of various engineering applications.

c) Syllabus

Based on the distinct fundamental mechanisms that are activated during shaping/joining of components, sub-assemblies and assemblies, the theoretical part of the course deals with techniques including: (a) forming at ambient or medium temperature, via plastic deformation of bulk material or sheet metal-working (rolling, extrusion, drawing, shearing, deep drawing, etc.), (b) melting and re-solidification (casting and welding) and (c) compression, shaping and firing of final products via sintering.

The laboratory part of the course per shaping process family is focused on: (a) hands-on

experience of students with a range of relevant equipment and devices and familiarization with their peculiarities, (b) the protocols/ technical specifications to be followed for assuring products quality and (c) the general guidelines and particular directions imposed by the health and safety regulations at international level.

d) Teaching and learning me	ethods - Evaluation		
Delivery	Lectures of theory and laboratory exercises face-to-face, within the classroom.		
Use of information and communications technology	Teaching using ICT, Laboratory education using ICT and experimental devices, communication and electronic submission		
	Activity	Semester workload	
	Lectures	39	
	Tutorials		
Teaching methods	Laboratory exercises	26	
	Computational exercises		
	Individual work	91	
	Course total	156	
Student performance evaluation	Theory: Intermediate assessment and written final examination. Laboratory: evaluation of practical skills and multiple-choice exams.		
	, , , , , , , , , , , , , , , , , , ,	1	

e) Suggested bibliography

- 1. Kalpakjian, S. and Schmid, S. (2014). Manufacturing Engineering & Technology (7th edition). Pearson Editions.
- 2. Schey, J.A. (2000). Introduction to Manufacturing Processes. McGraw-Hill Education.
- 3. Handbook of Workability and Process Design (2003). G.E. Dieter, H.A. Kuhn, S.L. Semiatin (editors), ASM International.