a) General				
School	ENGINEERING			
Academic unit	MECHANICAL ENGINEERING			
Level of studies	Undergraduate			
Course code	MM907E02	Semester	7	
Course title	Electrical, hydraulic and pneumatic motion systems			
Independent teaching activities		Weekly teaching hours	ECTS	
Lectures		4	4	
Laboratory exercises				
Course type		Special background		
Course category		Compulsory Elective Directions 1 & 2		
Prerequisite courses		-		
Language of instruction and examinations		Greek		
Is the course offered to Erasmus students		Yes		
Course website (url)		https://eclass.uniwa.gr/courses/MECH158/		
b) Learning outcomes and general competences				
b1. Learning outcomes				

Upon successful completion of this course, the student will be able to:

Hydraulic and/or Pneumatic actuating systems can be found in all modern industrial facilities that require power enforcement. Pneumatic positioning systems can be found in food industry due to their "clean" nature and their low maintenance cost whereas hydraulics can be used in applications that demand large forces. The understanding of all operation principles of such systems is a critical issue for a control engineer. In addition to this, the course aims to establish a strong knowledge background in the field so that all multiple devices and available in the market equipment, will be presented thoroughly and examples of circuitry and implementations will be provided. The basic target of controlling the position of actuators of both categories, is going to be categorized and then detailed explained with multiple control methods applied.

b2. General competences

- Search for analysis and synthesis of data and information with the use of the necessary technology

- Working independently
- Team work

c) Syllabus

All pneumatic operation principles and air fluid power analysis, Pneumatic devices and gear (cylinders, valves, sensors, tubing, etc) and their extensive operation principles, Dynamic analysis of piston stroke, mathematical equations and modelling, Combined Pneumatic circuits with multiple applications, examples in the real world and in simulation, Introduction to electrical signal use in pneumatic systems, All Hydraulic operation principles and oil fluid power analysis, Hydraulic devices and gear (cylinders, valves, sensors, piping, etc) and their extensive operation principles, Dynamic analysis of piston stroke, mathematical equations and modelling, Introduction to electrical driven hydraulics systems and applications and Complex Hydraulics circuits with multiple applications.

d) Teaching and learning methods - Evaluation

Delivery	Face-to-face, Distance learning		
Use of information and communications technology	 Open source software Multimedia applications MS Teams and eclass		
	Activity	Semester workload	
	Lectures	39	
	Tutorials	13	
Teaching methods	Laboratory exercises	0	
	Computational exercises	26	
	Individual work	52	
	Course total	130	
	Written final examination: 100%		
Student performance	Optional intermediate written progress exam: 20%		
evaluation	Optional intermediate assessment in computational problems: 20%		
	Possible distance oral examination if necessary		
e) Suggested bibliography			
	and Hydraulic Systems. Butterworth aulic and Pneumatic Power for Produ		