a) General				
School	ENGINEERING			
Academic unit	MECHANICAL ENGINEERING			
Level of studies	Undergraduate			
Course code	MM908E01	Semester	8	
Course title Production systems optimisation				
Independent teaching activities		Weekly teaching hours	ECTS	
Lectures		2	4	
Laboratory exercises		2	+	
Course type		Knowledge deepening/consolidation		
Course category		Compulsory Elective for Direction 1/2		
Prerequisite courses		-		
Language of instruction and examinations		Greek		
Is the course offered to Erasmus students		Yes/No		
Course website (url)		https://ops.mech.uniwa.gr/		
b) Learning outcomes and general competences				
b1. Learning outcomes				
Upon successful co	mpletion of this course,	the student will be able to:		
- Understand the fundamentals of modeling and optimisation				
- Study, design a	nd optimise energy and	production systems		
- Familiarise with	h the characteristics of n	nulticriteria analysis		
- Formulate and develop mathematical models for engineering problems				
b2. General competences				
- Search for, analysis and synthesis of data and information with the use of the necessary				
technology				
- Adapting to new situations				
- Working indepe	ndently			
- Team work				
- Working in an interdisciplinary environment				
 Production of new research ideas 				
c) Syllabus				
The aim of this course is to provide the foundations for studying, designing and optimising of				
production systems in general. The introduction of optimisation models and algorithms provide a				
framework to think about a wide range of issues that arise in manufacturing systems. The				
optimisation of energy systems is one of the core subjects of the module, for example the Pinch				
Analysis. The module also focuses in Multicriteria Analysis, Scenario Analysis and the				
implementation of mathematical optimisation in various manufacturing systems. Furthermore,				
modeling of simple and more complicated energy systems and the optimisation of energy systems				
In terms of integrated efficiency and profitability are also in detail analysed. Various case studies				
syllabus.				
d) Teaching and learning methods - Evaluation				
Dolivory	Face-to-face (Tase Studies Workshops		

Use of information and communications technology	Commercial/free/open source softwareMS Teams/Moodle		
	Activity	Semester workload	
	Lectures	26	
	Tutorials	13	
Teaching methods	Laboratory exercises	26	
	Computational exercises	13	
	Individual work	13	
	Course total	130	
Student performance evaluation	Final exam, Course Work and Written Assignments		
e) Suggested bibliography			
 Koukos Ioannis, 2007, [ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧ Ed. Tziola, Greece. 	ΙΝΤRODUCTION ΤΟ ΤΗΕ DE ΈΔΙΑΣΜΟ ΧΗΜΙΚΩΝ ΕΡΓΟΣΤΑ	SIGN OF CHEMICAL PLANTS ΔΣΙΩΝ", ISBN: 9789604181735,	

- 2. Edgar, T.F., Himmelblau, D.M, 1987, "OPTIMIZATION OF CHEMICAL PROCESSES", ISBN: 9780070189911, Ed. McGraw Hill
- 3. Ossenbruggen J. Paul, 1994, "FUNDAMENTAL PRINCIPLES OF SYSTEMS ANALYSIS AND DECISION-MAKING", ISBN: 9780471521563, Ed. John Wiley @ Sons, Inc
- 4. Ravindran A., Ragsdell K. M., Reklaitis G.V., 2006, "ENGINEERING OPTIMISATION. METHODS AND APPLICATIONS", 2nd Edition, ISBN: 9780471558149, Ed.Wiley
- 5. Sieniutycz Stanisław and Jeżowski Jacek, 2009, "ENERGY OPTIMISATION IN PROCESS SYSTEMS", eBook ISBN: 9780080914428, Ed. Elsevier